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ABSTRACT 
SEAN EDWIN WILLIAMSON: Post-Translational Modification of Hypoxia-Inducible 

Factor Proteins by O-Linked b-N-Acetylglucoseamine in Breast Cancer Cells 
 

  

One of the hallmarks of cancer is its ability to adapt its metabolism to survive and 

thrive despite needing to overcome significant energy barriers and low oxygen settings in 

order to do so. The hypoxia-inducible factor proteins (HIFs) play important roles in the 

processes in which cancer fulfills these requirements. The O-linked b-N-

acetylglucoseamine (O-GlcNAc) can be attached to cellular proteins through O-

glycosylation, and is thus considered a potential target for anticancer mechanisms. HIFs 

are composed of a (HIF-1a and HIF-2a, respectively) and b subunits. This research 

found that O-GlcNAc is able to attach to and modify the HIFa proteins. This was 

accomplished through the use of immunoprecipitation followed by western blot, 

examining nuclear extract samples prepared from human breast cancer T47D cells. The 

O-GlcNAc was found to attach to both HIF-1a and HIF-2a, and was most prominently 

expressed in the presence of O-(2-Acetamido-2-deoxy-D-glucopyranosylidenamino) N-

phenylcarbamate (PUGNAc), which enhances O-GlcNAcylation by inhibiting the 

enzyme OGA.  
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Introduction/Background  

 Cancer represents a diverse set of diseases which involve the unusual, rampant 

growth of cells, which usually spread into neighboring tissues. The cellular cycle of life, 

replication, and death is interrupted, leading to cells surviving when they should be dying 

and often subsequently forming masses called tumors. These cancerous cells differ 

inherently from healthy cells in several ways which allow them to continue growing 

beyond their usual limits. Whereas healthy cells can obey cell-to-cell signaling, such as 

those signals that inform cells to stop growing so as to not cause damage, cancer cells 

ignore many of these chemical signals. Contrary to normal cells, cancer cells often do not 

mature into differentiated cells that specialize in their function. This can lead to repeated 

replication of immature cells, often picking up more genetic mistakes and variation, 

sometimes promoting further accelerated growth. These cancer cells are also unable to 

repair themselves as healthy cells can. Healthy cells may undergo apoptosis (programmed 

cell death) if they recognize permanent genetic damage, but cancerous cells often ignore 

the signals that initiate this process. Further, where healthy cells maintain their 

appropriate position to fulfill a physiological role in the body, cancer cells are often prone 

to detach and move throughout the body, a detrimental process which can lead to 

metastasis, wherein a mass attaches to a point in the body away from its origin and 

continues to grow. These cellular changes are initiated by multiple changes in one of two
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 types of genes; overexpression of cancer causing oncogenes or repression or disabling of 

tumor suppressor genes.  

Along with this limitless replication, propensity to metastasize, resistance to 

apoptosis, and genome instability and mutation, there are six other universally accepted 

major characteristics of cancer23. One such characteristic is an ability to avoid growth 

suppressors. This can be accomplished through the disabling of tumor suppressor genes, 

but is also achieved by overcoming contact inhibition, which is a growth prevention 

method which shuts off division once cells are in contact with other cells on all sides5. 

Another hallmark of cancer is independence from external growth factors. This allows 

cancer cells to grow self-sufficiently, either by producing such signals themselves via 

autocrine signaling, by cutting negative feedback loops, or by permanently activating 

feed forward pathways to respond to its own autocrine signals23. Cancer cells also 

promote angiogenesis, or the formation of new blood vessels, in order to fuel a tumor’s 

new need for blood and oxygen5. Along with genome instability, the last and most recent 

common characteristics of cancer include evasion of the immune system, deregulation of 

typical metabolism features and a subsequent elimination of cell energy limitations, and 

tumor caused inflammatory responses5.  

 Cancers are classified by the cells from which they are derived. Thus, breast 

cancer develops from breast tissues and the tumor cells consequently resemble breast 

tissue cells. Diagnosis involves an initial breast examination screening by mammography 

followed by a biopsy, including analysis for estrogen and progesterone receptors and the 

human epidermal growth hormone receptor 2 (HER2) protein9. Symptoms of breast 
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cancer include lumps in the breast, changes in breast shape, fluid or blood excretions 

from the nipple, changes in skin texture or dimpling. Though only 0.1% of men will 

develop breast cancer throughout their lifetimes, an estimated one in eight women in the 

U.S. will develop the disease21. Breast cancer progresses through four stages, which 

increase in severity and are determined by taking into account the size of the tumor, 

whether it has spread to the lymph nodes, and whether the tumor has metastasized. Stage 

0 is precancerous, stages 1 through 3 refer to tumors in the breast and lymph nodes, and 

stage 4 is metastatic and features the least optimistic prognosis. Stage 4 breast cancer 

cells may migrate to nearly any organ, but most commonly settle in bone, brain, liver, 

lungs, or skin tissue9. At stage 4, the five-year survival rate is around 22 percent. At stage 

3 this rate is 72 percent and at stage 2 it is greater than 90 percent14. Thus, early detection 

and treatment is imperative. While all breast cancers originate in the breast tissue, there 

can be many variations of the disease. They vary in specific location, as tumors can form 

in either ducts, which are tubular passageways in the body through which secretions can 

flow, or lobules, which is glandular tissue throughout the breast that produces milk and 

leads into ducts. Breast cancers are also defined by invasiveness, or whether or not they 

spread to surrounding tissues. The most common breast cancers are ductal carcinoma in 

situ (DCIS), invasive ductal carcinoma (IDC), and invasive lobular carcinoma (ILC)20. 

Ductal carcinoma in situ is either non-invasive or pre-invasive and Stage 0, whereas both 

IDC and ILC are invasive and pose risk of metastasis20. Other less common types of 

breast cancers include sarcomas, Paget disease, angiosarcomas, or inflammatory breast 

cancer.  
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 The tumor microenvironment (TME) of a cancerous mass of cells encompasses 

the interaction between the tumor and the surrounding tissues, including the blood 

vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, 

lymphocytes, signaling molecules, and extracellular matrix. The tumor microenvironment 

consists of immune system cells, tumor vasculature and lymphatics, fibroblasts, pericytes, 

and the malignant cancer cells1. This TME affects how the tumor grows and evolves, 

while the tumor can affect the TME by releasing extracellular signaling molecules, 

promoting angiogenesis (new blood vessel formation), and causing immune tolerance and 

inflammation8. One key example of the interaction between the tumor and its 

environment is the formation of vasculature. Angiogenesis is controlled by over a dozen 

angiogenic activator and inhibitor proteins, the levels of which reflect the aggressiveness 

of the cancer15. Cancer cells must interact with nearby existing vasculature in the TME 

using these proteins to form new vasculature to enable tumor growth and survival. The 

tumor microenvironment and its associated growth and maintenance is heavily dependent 

on this newly formed vasculature, as it, like healthy tissue, requires both blood and 

lymphatic networks to provide oxygen and remove waste products. Once angiogenesis 

starts, there is continued development of new blood vessels, which are usually leaky and 

inefficiently perfused compared to healthy natural vasculature. This incomplete 

vasculature suppresses immune surveillance for the tumor cells, helping the cancer to 

largely evade host immune responses23. 

Another example of the interaction of tumors with the TME is in their response to 

inflammation. Inflammatory cells are a large part of the TME, and it has been found that 

inflammation is critical for tumor progression6. The surrounding fibroblasts, extracellular 
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matrix, and immune cells respond in a way similar to how they would counter a wound; 

aiding angiogenesis, preventing apoptosis, and speeding up the cell cycle. All of this 

encourages tumorigenesis10. Inflammation is the result of a network of signals initiated at 

the time of tissue injury in order to heal wounds. Tumor cells are capable of producing 

cytokines and chemokines, both of which can attract leukocytes and consequently initiate 

an inflammatory response. Cytokines are proteins that mediate communication between 

cells. They are synthesized by fibroblasts and endothelial cells in response to 

inflammation. They regulate cell differentiation, migration, death, and survival. 

Cytokines can produce an antitumor response, but also can promote cell transformation 

and malignancy in response to chronic inflammation11. Also involved with the TME, 

carcinoma associate fibroblasts (CAFs) are a group of fibroblasts which are taken over by 

cancer cells in order to promote angiogenesis by producing proangiogenic signaling 

proteins, including some which promote angiogenesis in tumors that are resistant to other 

angiogenesis promoting protein factors6,23. This contrasts with the healthy fibroblasts, 

which are typically anti-tumorigenic. The CAFs are also able to secrete transforming 

growth factor-beta (TGF-β), which promotes metastasis16.  

Tumor hypoxia is a critical element of the tumor microenvironment, and carries 

with it major implications for cancer cells. It occurs when tumor cells are deprived of 

oxygen. As tumors grow, they outgrow the existing vasculature, resulting in a lower 

oxygen concentration than other tissues of the same type. Causes of tumor hypoxia 

include an increase in the distance oxygen must diffuse between the tumor cells and the 

blood vessels, reduced oxygen transport capabilities of the blood due to anemia (caused 

by either the disease or treatment), and abnormalities in the structure and function of the 
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new tumor vasculature22. This lack of oxygen can act as a suppressor of the tumor by 

slowing proliferation or possibly even causing cell death. However, it can also result in 

increased progression and proliferation along with heightened resistance to cancer 

treatment through changes in the genome and proteins in the TME caused by the hypoxic 

conditions22. 

 Hypoxia increases the already-unpredictable genomic instability of tumors, 

causing even more genetic mutations in cancer cells. This can result in the production of 

cells with greater survivability under hypoxic conditions which clonally expand and 

propagate a cycle of tumor cells with increasing survivability. The results of this selection 

can include tumor proliferation, metastasis, and resistance to radiation and chemotherapy. 

Correspondingly, hypoxic stress can cause changes in gene expression and the tumor cell 

proteome. These changes may be beneficial, as they have the potential to slow or stop 

growth by produce cell-cycle arrest at the G1/S checkpoint as caused by activation of the 

cyclin-dependent kinase inhibitors p21 and p27 by hypoxia-inducible factor-1 (HIF-1). 

Hypoxia has also been found to cause p53 level to rise, possibly resulting in apoptosis, 

cause terminal differentiation of cells, and lead to necrotic cell death. While all these 

results can be considered beneficial to the overall health of the cancer patient, there can 

also be severely detrimental proteomic affects, as well. Cells may adapt to the hypoxic 

condition, or attempt to leave the hypoxic environment by local invasion or metastatic 

spread.  hif 

 Hypoxia-inducible factors (HIFs) are the body’s natural transcriptional response 

to lowering oxygen concentration levels. When low cellular levels of usable oxygen are 
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detected, HIF transcription factors are upregulated. These transcription factors affect gene 

expression involved with alteration of metabolism, contributions to angiogenesis, 

remodeling of the extracellular matrix, metastasis, invasion, motility, cancer stem cell 

maintenance, evasion of immune system, and resistance to chemotherapy and radiation 

therapy18. Encoded for by the HIF1A gene, HIF-1α protein is the hypoxia-responsive 

subunit of heterodimeric transcription factor HIF-1. Hypoxia-inducible factor-1 induces 

transcription of over sixty genes, including those encoding proteins such as erythropoietin 

and vascular endothelial growth factor (VEGF)22. In response to varying oxygen levels, 

HIF-1 undergoes conformational changes and alters its transcriptional activity. This HIF-

1α transcriptional activity is particularly sensitive to altered oxygen levels. Under 

conditions of normal oxygen levels, HIF-1α is rapidly ubiquitinated and degraded. 

Contrarily, under hypoxic conditions, this protein degradation is inhibited and HIF-1α 

accumulates. This HIF-1α subunit forms a heterodimer with a HIF-1β subunit, which 

instigate transcriptional activity on their target genes. 

Overexpression of HIF-1 subunits HIF-1α and HIF-2α are correlated with 

increased tumor growth and metastasis due to their role(s) in creating new blood vessels 

and altering cell metabolism in order to counter hypoxia12. Apoptosis is a normal 

response to hypoxia; however, HIF-1 acts to prevent apoptosis in cancer cells in which it 

is overexpressed. Expression of HIF-1 has been found to be elevated in a number of 

cancers, including colon, breast, pancreas, kidneys, bladder, brain, ovary, and prostate19. 

In many of these and other cancers, overexpression of HIF-1 leads to heightened tumor 

progression and has been found to be indicative of resistance to certain treatments 

including radiation and chemotheraphy18. Overexpression of HIF-1α has been found in 
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the early pre-invasive stages of breast cancer and may even regulate the subsequent 

progression of breast tumors3. Overexpression of HIF-1α was also shown to be a 

predictor of poor cancer treatment response. Similar trends have also been observed in 

brain and ovarian cancers, as well as in breast cancers2.  

 Due to the relative lack of oxygen and the increased proliferation that is exhibited 

in cancer cells, energy needs in tumors are higher than they are in healthy cells and it is 

more difficult for tumor cells to meet these increased energy demand by traditional 

means. Though tumor metabolism varies, one primary conserved factor of the metabolic 

changes associated with tumorigenesis is an overall improvement of cellular fitness that 

provides a selective advantage during tumor growth. This is commonly achieved through 

changes that aid cell survival during stress (such as hypoxia) or by changes that facilitate 

growth in times when cell growth should be otherwise suppressed. The Warburg effect is 

one such notable deviation from the norm for cancer cells. While healthy cells create 

energy most efficiently through utilization of mitochondria in oxidative phosphorylation, 

cancer cells typically create energy through glycolysis and lactic acid fermentation, even 

in the presence of oxygen. This process is aerobic glycolysis, or the Warburg effect, and 

is instigated by hypoxic conditions within the TME. Transcriptional activation of HIF-1 

also induces alterations in tumor cell metabolism, such as increasing glycolytic 

variability. Other variations in metabolism used to counteract a hypoxic environment in 

cancer cells include using glutamine as a substrate for oxidative ATP production or by 

providing acetyl-CoA in order to promote cell proliferation4. 
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 Along with energy production, it is also immensely important for cancer cells to 

synthesize lipids and macromolecules, as this enables proliferation and growth of the 

tumors. Fatty acid synthesis produces important molecules that play important roles in 

tumor cell signaling and membrane biosynthesis. Acetyl-CoA is a necessary prerequisite 

for fatty acid production. In healthy cells, Acetyl-CoA is normally produced by the 

breakdown of glucose; however, in hypoxic or nutrient devoid environments, glutamine, 

acetate, and (in some cell lines) leucine are able to be utilized as carbon sources. Hypoxic 

conditions also suppress de novo fatty acid synthesis from glucose. Fatty acids may also 

be obtained for membrane biosynthesis from the extracellular space. In such cases, PI3K 

signaling initiates fatty acid uptake and prevents its degradation. This process can be 

regulated depending on the stress of the surrounding environment of the cell, and it is 

necessary for the most pronounced growth associated with hypoxic tumors4. 

 The monosaccharide derivative of glucose, N-Acetylglucosamine (GlcNAc), has 

the molecular formula of C8H15NO6. It is a part of both bacterial cell walls 

(peptidoglycan) and in the cell walls of fungi, and forms the polymer chitin in the outer 

shells of insects and crustaceans. The intracellular carbohydrate O-linked β-N-

acetylglucosamine (O-GlcNAc) is found in the nucleus and cytoplasm which alters 

proteins on the serine and threonine hydroxyl groups. Protein modification by O-GlcNAc 

is especially relevant in many human diseases, one of which being cancer7. The process 

of O-GlcNAcylation is the covalent attachment of β-D-N-acetylglucosamine to serine or 

threonine residues and is important as a regulator in many cellular processes. It is 

associated with sensing capabilities, as O-GlcNAcylation rises in response to increased 

glucose and glutamine. As tumors are able to change their cell metabolism from oxidative 
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phosphorylation to the glycolytic pathway via the Warburg effect, glucose uptake is 

heavily increased. Meanwhile, cancer cells also increase glutamine uptake. The 

combination of these factors leads to an increase in O-GlcNAcylation and the continual 

transformation of the cancer cell metabolism in general13. The process of O-

GlcNAcylation has been found to have a hand in cell signaling, transcription, replication, 

and cell metabolism, all of which can have cancer-related implications. It is catalyzed by 

O-linked N-acetylglucosamine transferase (OGT), an enzyme which transfers the N-

acetylglucosamine from uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to a 

protein7. The process of O-GlcNAcylation has been found to be increased in a number of 

breast cancer cell lines and heightened OGT protein expression is attributed to more 

aggressive breast cancer cell lines7.  
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Methods and Materials  
 
Cell Culture/Compound Treatment 

 
Human breast tumor T47D cells (ATCC) were maintained in RPMI160 medium 

(Corning) in the presence of fetal bovine serum (FCS, 10% v/v, Hyclone) and 

penicillin/streptomycin. Prior to compound treatment, T47D cells were detached from 

plates by trypsin and used to make seed plates for later use in SDS-PAGE and Western 

Blotting after later nuclear extractions and cytoplasmic extractions. The cells were grown 

overnight on a single 10 cm plate. Conditioned media was aspirated from this plate, and 

the plate was washed once with cold Dulbecco’s Phosphate Buffered Saline (DBPS), 

diluted from 10x to 1x (Sigma Aldrich D1408). The cells were subsequently detached 

from the plate using approximately 0.9 mL of a 0.25% trypsin ethylenediaminetetraacetic 

acid (trypsin-EDTA) solution (Gibco 25200-056). The trypsin-EDTA solution was added 

at 37°C for five minutes. The addition of the trypsin to the 10cm cell plate effectively 

caused the white cells to detach from the media, and they slid slowly around the bottom 

of the plate. They clumped together after detaching, and flowed with the pink trypsin. 7.5 

mL Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) with 10% 

Fetal Calf Serum (FCS) was added, followed by penicillin/streptomycin (P/S) antibiotics. 

The resulting solution was pipetted thoroughly multiple times to mix. The cells were 

counted using a hemocytometer and an inverted microscope. A drop of the cell solution 

was added into the hemocytometer, which was pulled into the viewing area by capillary 

action. The hemocytometer was then viewed under the inverted microscope. Cells within 
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a 4x4 square grid on the hemocytometer were counted manually, with this process 

beingrepeated three other times for the other 4x4 square grids. These values were 

averaged, and that total multiplied by 10,000 in order to arrive at the approximate cell 

count per mL. The average cell count with the hemocytometer was 75 cells in the four by 

four grid, which, when multiplied by 10,000, indicated 7.5x105 cells/mL. Cell-containing 

solution (10 mL) were with 5 mL of media to bring the final concentration to 0.5 x 106 

cells/mL, which was used to create seed plates. Four small, 6 cm plates were seeded. 1.5 

x 106 cells were used to seed each plate in a final volume of 3 mL which contained the 

cells and DMEM/F12. A larger seed plate was created using 1 mL 0.5 x 106 cells/mL 

with 9 mL DMEM/F12 media. The cells and media were mixed using a pipette, then 

incubated at 37°C overnight.  

The plates were washed once with 3 mL cold DPBS diluted from 10x to 1x. Each 

of the four seed plates had a different compound added to them alongside 5% FCS with 

P/S. Three mL of 5% media was added to the first plate. Three µL of 10 mM 1,10-

phenanthroline was combined with 3 mL dimethyl sulfoxide (DMSO), bringing the 

concentration of 1,10-phenanthroline to 10 µM, was added to the second plate. 0.9 µL of 

O-(2-acetamido-2-deoxy-D-glucopyranosylidenamino) N-phenylcarbamate (PUGNAc) at 

100 mM concentration, bringing the concentration to 30 µM, was combined with 3 mL of 

DMSO and added to the third plate. The fourth plate contained 10 µM 1,10-

phenanthroline and 30 µM PUGNAc. These four plates were incubated for four hours at 

37°C. 
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Nuclear/Cytoplasmic Extracts 

 Nuclear and cytoplasmic extractions were performed on the T47D cells from 

these four seed plates. The media was first removed after the incubation, then 

approximately 2 mL DPBS was used to wash the cells. The DPBS was aspirated after 

washing. 300 µL trypsin was added and moved around the plates to detach the cells, 

followed by five minutes of incubation at 37°C. Media (1 mL) was added to each of the 

four plates, then the trypsin/media solution was mixed thoroughly over the cells with a 

pipette. The cells alongside the trypsin/media solution were transferred from each plate to 

a separate 2 mL centrifuge tube. Then, DMEM media (0.5 mL) was used to wash each 

plate again, then was again transferred from each plate to their respective 2 mL centrifuge 

tube. These tubes were counterbalanced and centrifuged in a microfuge at 850 rpm for 

four minutes.  

 The centrifuge tubes were removed and the supernatant was pipetted out of each. 

The pellets were washed with 1x DPBS to remove proteins from the 

penicillin/streptomycin and centrifuged again at 1264 rpm for five minutes. The 

supernatant was again pipetted out after centrifugation. The tubes were put on ice, and the 

cells in the pellet were suspended in 10 µL buffer Cytoplasmic Extraction Reagent I 

(CER1) (Thermoscientific 78833) and 5 µL protease inhibitor. The tubes were vortexed 

vigorously for 15 seconds then incubated on ice for 10 minutes. Ice-cold Cytoplasmic 

Extraction Reagent II (CERII) (5.5 µL) was then added, and the tubes were vortexed for 

another 5 seconds before going back on ice for one minute. They were taken off ice, 

vortexed once more for 5 seconds, then centrifuged at max speed for 5 minutes in the 

microcentrifuge.  
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 The supernatant, containing the cytoplasmic extract, was transferred to pre-chilled 

tubes, labeled CE1, CE2, CE3, and CE4, and placed on ice to keep cold. The pellet 

remaining in the centrifuge tubes, which contained the cell nuclei, was suspended in 50 

µL ice-cold Nuclear Extraction Reagent (NER) and 2.5 µL protease inhibitor. The 

centrifuge tube was vortexed at the highest setting for 15 seconds. The sample was put 

back on ice for 40 minutes, and vortexed for 15 seconds every 10 minutes. The tubes 

were then removed from ice and centrifuged at 16,000xg for 10 minutes. The supernatant, 

containing the nuclear extract, was transferred to a clean, pre-chilled tubes labeled NE1, 

NE2, NE3, and NE4, and put back on ice. Both the cytoplasmic extract and the nuclear 

extract were stored at –20°C.  

 

Protein Concentration/Quantification 

 The cytoplasmic extracts and nuclear extracts from the T47D cells were analyzed 

and compared to standards to determine the protein concentration using a micro BCA 

protein assay kit (ThermoFisher Scientific 23235). A series of standards of varying 

concentrations were first prepared in 0.5 mL tubes using micropipettes. Using bovine 

serum albumin (BSA) at a concentration of 2 mg/mL and distilled water, the following 

array of protein concentrations were produced in eleven separate 0.5 mL tubes   

(note: tubes B through J use prior mixed tubes as their source of BSA). 
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Table 1. Micro BCA protein concentration standards prepared for protein concentrations 

assay using BSA at 2 mg/mL 

 

Tube 

 

dd H2O added 

 

BSA vol added 

 

Final Concentration 

A 450 µL 50 µL 200 µg/mL 

B 400 µL 100 µL from tube A 40 µg/mL 

C 510 µL 90 µL from tube A 30 µg/mL 

D 250 µL 250 µL from tube B 20 µg/mL 

E 250 µL 250 µL from tube C 15 µg/mL 

F 250 µL 250 µL from tube D 10 µg/mL 

G 250 µL 250 µL from tube E 7.5 µg/mL 

H 250 µL 250 µL from tube F 5 µg/mL 

I 250 µL 250 µL from tube H 2.5 µg/mL 

J 250 µL 250 µL from tube I 1.25 µg/mL 

K 250 µL 0 µL 0 µg/mL 
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Each of these volumes were added to the 0.5 mL tubes and mixed thoroughly but 

gently, and were stored at –20°C. The eight 2.1 µL protein extracts from the nuclear 

extracts and cytoplasmic extracts were each combined with 102.9 µL ddH2O, creating a 

total volume of 105 µL. Each standard (100 µL ) was put into individual wells of a 96-

well plate (Costar 2592), followed by NE1, NE2, NE3, NE4, CE1, CE2, CE3, CE4, and 

finally NER (nuclear extract reagent) and CER (cytoplasmic extract reagent), which were 

both added in duplicate. The 96-well plate thus contained the following, in columns 3-6: 

 

Table 2. The 96-well plate layout for micro BCA protein concentrations assay with T47D 

breast cancer cell line 

 3 4 5 6 

A 0 µg/mL 0 µg/mL 30 µg/mL 30 µg/mL 

B 1.25 µg/mL 1.25 µg/mL 40 µg/mL 40 µg/mL 

C 2.5 µg/mL 2.5 µg/mL NER CER 

D 5 µg/mL 5 µg/mL NER CER 

E 7.5 µg/mL 7.5 µg/mL NE1 CE1 

F 10 µg/mL 10 µg/mL NE2 CE2 

G 15 µg/mL 15 µg/mL NE3 CE3 

H 20 µg/mL 20 µg/mL NE4 CE4 
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Along with the 100 µL of protein-containing solution placed in the wells, 100 µL 

of a work solution was added to each well and mixed thoroughly with a pipette. The work 

solution contained 1750 µL micro BCA reagent A (MA) stock solution, 1610 µL reagent 

B (MB) stock solution, and 140 µL micro BCA reagent C (MC) stock solution. After 

sealing and a one hour incubation at 37°C, a SPECTRAFluor Plus was used to measure 

light absorbance of the plate to measure color change in the plate wells. Readouts were 

taken at 620 nm and 562 nm.   

 A second Micro BCA protein concentration assay was completed using the same 

methods for the standards, using the same BSA calculations as displayed in Table 1. A 

96-well plate was filled using these standards and derivatives of a human prostate cancer 

cell PC-3 cells. Nuclear and cytoplasmic extracts along with NER and CER were again 

used in a 96-well plate. The CE derivatives were measure at 1:50 dilutions and in 1:100 

dilutions. The experimental cytoplasmic and nuclear extract solutions were varied as 

well. The nuclear and cytoplasmic extracts 1 through 6 contained the following added 

solutions: 

NE/CE1. Media control;  
NE/CE2. 10 uM 1,10-phenanthroline;  
NE/CE3. 30 uM PUGNAc;  
NE/CE4. 10 uM MG132;  
NE/CE5. 1,10-phen + PUGNAc; and  
NE/CE6. MG132 + PUGNAc. 
 
 The plate was organized as follows: 
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Table 3. The 96-well plate layout for micro BCA protein concentrations assay with PC-3 

prostate cancer cell line 

 1 2 3 4 5 6 

A 0 µg/mL  0 µg/mL 30 µg/mL 30 µg/mL CE1 

(1:50) 

CE4 

(1:50) 

B 1.25 

µg/mL 

1.25 

µg/mL 

40 µg/mL 40 µg/mL CE2 

(1:50) 

CE5 

(1:50) 

C 2.5 

µg/mL 

2.5 

µg/mL 

NER 

(1:50) 

CER 

(1:50) 

CE3 

(1:50) 

CE6 

(1:50) 

D 5 µg/mL 5 µg/mL NER 

(1:50) 

CER 

(1:100) 

CE1 

(1:100) 

CE4 

(1:100) 

E 7.5 

µg/mL 

7.5 

µg/mL 

NE1 

(1:50) 

NE4 

(1:50) 

CE2 

(1:100) 

CE5 

(1:100) 

F 10 µg/mL 10 µg/mL NE2 

(1:50) 

NE5 

(1:50) 

CE3 

(1:100) 

CE6 

(1:1000) 

G 15 µg/mL 15 µg/mL NE3 

(1:50) 

NE6 

(1:50) 

  

H 20 µg/mL 20 µg/mL     
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 Following the addition of the standards and the cellular extracts, which were 

added in quantity of 100 µL, a 100 µL volume of a work solution was added. This work 

solution was created using 0.1 mL C of the BCA reagents, 2.4 mL B of the BCA 

reagents, and 2.5 mL A of the BCA reagents. The work solution was mixed well into the 

wells and the plate was sealed and incubated for 1 hour at 37°C.  

Western Blot 

 A buffer was created using 95 µL Laemmli sample buffer, which was added to a 

1.5 mL tube along with 5 µL b-mercaptoethanol (bME) and mixed well. The NE1-4 and 

CE1-4 were removed from the freezer and thawed, then centrifuged. The volume 

necessary to get 15 µg of protein from each nuclear extract was calculated based on the 

protein concentrations found through the protein concentration assay and added to a clean 

1.5 mL tube. The total volume was brought to 10.20 µL in each 1.5 mL tube using either 

NER (for NE tubes) and CER (for CE tubes). These solutions were mixed well with a 

pipette. The previously prepared buffer solution (10.2 µL) was added and again mixed 

well. Each of these 1.5 mL tubes were boiled in a hot water bath for about 5 minutes to 

denature the proteins then put on ice. 

 A second buffer was prepared for use in the western blot using 10x 

Tris/Tricine/SDS buffer solution (Bio-Rad 1610744). The 10x buffer solution (20 mL) 

was first mixed with 180 mL of ddH2O in order to dilute it to 1x. Blue ranger marker was 

loaded into the western blot gel well one in order to serve as the standard and to aid in 

estimating protein sizes. It was followed by NE1-4 in wells 2-5, LM cells were loaded 

into well 6, and CE1-4 was added into wells 7 to 10. The western blot was run at 40 mA 

constant current for 40 minutes, then at 100V for one hour. The reading from the western 
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blot was then transferred from the gel to a 0.45 µm nitrocellulose membrane in distilled 

water. Transfer buffer (5x, 200 mL) containing 3.03 g Tris base and 14.42 g of glycine 

was added to 100 mL methanol and 700 mL dd-H2O to dilute it to a 1x transfer buffer. 

The gel was soaked in this 1x transfer buffer, then ran through the transfer apparatus 

under water for 1 hour at 140 mA. Ice was placed outside the transfer apparatus to keep 

cold, and the transfer was completed on a stir plate with a bar. Ponceau S solution, 

negatively charged staining reagent which binds to the positive amino groups of the 

proteins,  was used to stain the proteins on the membrane17.  

 

Immunoprecipitation 

 A Tris-buffered saline and Polysorbate 20 (or Tween 20) solution was made to aid 

in the blocking of proteins in order to prevent non-specific antibody binding during 

immunoprecipitation of the nuclear extracts. This Tris-buffered saline and Tween (TBST) 

solution contained 5 mL 1M Tris pH 6.8, 7.5 mL 5M NaCl, and 0.13 mL Tween 20 per 

250 mL of solution. Protein rich milk was then prepared using 5 g dry blotting grade 

blocker milk (Bio-Rad 1706404) in 100 mL TBST. The membranes were blocked 

overnight at 4°C while coated in the 5% milk/TBST solution. The primary antibody used 

in immunoprecipitation for the HIF2a protein was an anti-HIF-2a polyclonal from 

Novus, which was diluted at 1 to 1000 in 5% milk/TBST (10µL antibody in 10 mL 5% 

milk/TBST). The primary antibody used for the HIF-1a protein was anti-HIF-1a 

monoclonal antibody at a concentration of 250 µg/mL, of which 1 µL was used. The 

antibodies were added to the plates and left for 1 hour at room temperature with rocking. 
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The plates were then washed once with 5% milk/TBST for 10 minutes with rocking, then 

a second and third time for 5 minutes each.  

The secondary antibody, a goat anti-rabbit with horseradish peroxidase (HRP) 

(Pierce #1858415), was then added at a 1 to 3000 dilution. The plate was incubated at 

room temperature for 1 hour with rocking. The plate was then washed with TBST 

(without milk) for 10 minutes with rocking, then washed twice more with TBST alone for 

5 minutes each with rocking. The membrane was left in TBST until it was ready to 

develop. Pierce enhanced chemiluminescence 2 (ECL2) western blotting substrate was 

used to aid in reactivity and detection. When it was ready to be used in western blotting, 

the excess TBST liquid was drained off and West Femto Maximum Sensitivity Substrate 

was put on membrane (1.5 mL of stable peroxide buffer and 1.5 mL of luminol enhancer 

solution). The membrane was soaked for 5 minutes then the excess liquid was drained.  

  

Western Blot for O-GlcNAC 

 The proteins isolated from the immunoprecipitation were used in a second 

western blot, the procedure of which was the same as the earlier western blot. The first 

four lanes were filled with HIF-1a isolated proteins, and the second set of four lanes 

were filled with HIF-2a isolated proteins. The first lane of each set of four lanes 

contained the cells and media alone, the second lane of each set of four contained 10 µM 

1,10-phenanthaline alongside the proteins, the third lane of each set of four contained 30 

µM PUGNAc alongside the proteins, and the last lane of each set of four contained the 

proteins with both 10 µM 1,10-phenanthaline and 30 µM PUGNAc.
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Results/Discussion 

 The following tables were acquired from the SPECTRAFluor Plus as absorbance 

for the 96-well plate wells indicated in Table 2 and Table 3. The values are indicative of 

the light absorption measured at 562 nm.  

 

Table 4. Light absorption in nm of micro BCA protein concentration assay with T47D 

breast cancer cell line (corresponding to Table 2) 

 3 4 5 6 

A 0.155 0.144 0.591 0.585 

B 0.169 0.160 0.692 0.698 

C 0.170 0.224 0.153 0.152 

D 0.197 0.190 0.153 0.152 

E 0.232 0.244 0.643 1.337 

F 0.256 0.255 0.620 1.236 

G 0.352 0.359 0.561 1.165 

H 0.415 0.395 0.663 1.382 

 

 The protein concentrations of the cellular extracts were calculated using a line of 

best fit derived from the slope of the standards. The averages of the twice-added samples 

were calculated, and the following graph was created: 
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Figure 1. Graph of standard curve from micro BSA protein concentration assay with 

T47D breast cancer cells  

 

 The line of best fit had the formula 

   y = 0.0140x + 0.144 

which was used to calculate the protein concentrations of the nuclear and cytoplasmic 

extracts from their absorption readings. These values were then multiplied by 50 for the 1 

in 50 dilutions to arrive at the original protein concentration. The values for protein 

concentration of NE and CE were thus obtained. 
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Figure 2. Protein concentrations of pre-diluted nuclear and cytoplasmic extracts of T47D 

cells  

 

 The cytoplasmic extracts contained a significantly higher concentration of 

proteins than the nuclear extracts. Both the nuclear extracts and cytoplasmic extracts 

displayed a slight decrease in protein concentration when exposed to 1,10-phenanthaline 

(10 µM); there was a 4.5% decrease in protein concentration in nuclear extracts and an 

8.5% decrease in protein concentration in cytoplasmic extracts. However, there was a 

greater discrepancy between the control and the 30 µM PUGNAc exposed NE and CE. 

PUGNAc raises the levels of O-GlcNAc in the cells, which plays a role in the 

ubiquitination and subsequent degradation of proteins. Thus, in the case of the PUGNAc 

exposed NE and CE, a slight drop in protein concentration due to the heightened O-

GlcNAc influenced protein degradation is appropriate. When combined with the 1,10-

phenanthroline, which is used as a ligand, the O-GlcNAc binds to the proteins less often, 

causing a lack of a decrease in protein concentration.  
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Table 5. Light absorption in nm of micro BCA protein concentration assay with PC-3 

prostate cancer cell line (corresponding to Table 3) 

 

 1 2 3 4 5 6 

A 0.113 

 

0.115 0.574 0.583 1.044 0.986 

B 0.138 0.142 0.716 0.721 0.988 0.868 

C 0.162 0.157 0.123 0.130 0.988 0.869 

D 0.188 0.190 0.123 0.115 0.662 0.619 

E 0.227 0.222 0.574 0.556 0.649 0.561 

F 0.276 0.273 0.580 0.598 0.640 0.545 

G 0.328 0.345 0.605 0.571   

H 0.448 0.424     

 

The protein concentrations of the cellular extracts were again calculated using a 

line of best fit derived from the slope of the standards.  
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Figure 3. Graph of standard curve from micro BSA protein concentration assay with PC-

3 prostate cancer cells 

  

The line of best fit had the formula 

   y = 0.0152x + 0.115 

which was used to calculate the protein concentrations of the nuclear and cytoplasmic 

extracts from their absorption readings. These values were then multiplied by 50 for the 1 

in 50 dilutions and by 100 for the 1 in 1000 dilutions to arrive at the original protein 

concentration. The values for protein concentration of NE and CE were thus obtained. 
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Figure 4. Pre-diluted protein concentrations of nuclear extracts of (1:50) PC-3 cells  

 

 

Figure 5. Pre-distilled protein concentrations of cytoplasmic extracts of (1:50) PC-3 cells 
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Figure 6. Pre-distilled protein concentrations of cytoplasmic extracts of (1:100) PC-3 

cells 
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the ubiquitination of proteins, especially when combined with 30 µM PUGNAc (which 

has been found to increase O-GlcNAc ubiquitination). This was expected to cause an 

overall increase in protein concentration. However, this was not displayed in either the 

nuclear extracts nor the cytoplasmic extracts. Instead, there was an overall drop in protein 

concentration exhibited for the cytoplasmic extracts, and the nuclear extracts saw no 

change in 10 µM MG132 added cells, even those including 30 µM PUGNAc. 

Furthermore, in the case of the nuclear extracts, the protein levels were notably similar to 

one another, with little deviation displayed between the control and the experimental 

cells. There was a much more significant differences in the cytoplasmic extracts, yet they 

often did not follow the expected trends of lower protein concentration in 30 µM 
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PUGNAc, nor did they follow the expected protein concentrations near the control for 

those with 10 µM 1,10 phenanthroline and 10 µM MG132. 

 

 

 

 

 

Figure 7. Western blot analysis of HIF-2a in nuclear and cytoplasmic extracts and LM 

cells 

Blue ranger marker was loaded into the western blot gel well one, followed by 

NE1-4 in wells 2-5, LM cells were loaded into well 6, and CE1-4 was added into wells 7 

to 10. Wells 7 through 10, containing the CE, did not produce any bands, indicating a 

lack of the protein. Furthermore, the nuclear extract wells including 1,10-phenanthroline 

104	______	
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(wells 2 and 4) indicated the presence of HIF-2a proteins. The nuclear extract with 30 

µM PUGNAc alone in well 3 displayed a lack of the HIF-2a protein. Since PUGNAc 

raises O-GlcNAc levels, and O-GlcNAc aids in protein degradation, it makes sense that 

the HIF-2a protein is not represented in this western blot. Furthermore, the expression of 

the HIF-2a protein in the lane with 1,10-phenanthroline and PUGNAc can be explained 

by the ability of 1,10-phenanthroline to form a ligand with O-GlcNAc and prevent the 

binding to and subsequent ubiquination of proteins, allowing them to be expressed in the 

western blot. This is evidence of the ability of O-GlcNAc to influence and interact with 

the HIF-2a proteins.  

 

 

 

 

Figure 8. Western blot analysis of O-GlcNAc in nuclear extracts probed for HIF-1a and 

HIF-2a 

 

 The four left most wells contained HIF-1a proteins, with the first well containing 

a control media, the second containing 10 µM 1,10-phenanthroline, the third containing 

104	______	
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30 µM PUGNAc, and the fourth containing both 30 µM PUGNAc and 10 µM 1,10-

phenanthroline. The second set of four wells contained HIF-2a proteins, with the wells 

ordered from left to right containing the same experimental variables as the first four 

wells. Both the nuclear extracts and the cytoplasmic extracts display bands around the 

104 kDa region for the PUGNAc containing wells, with a much stronger band present in 

the only PUGNAc containing well. This band is indicative of O-GlcNAc, the protein of 

interest. The presence of O-GlcNAc in those wells as opposed to those lacking PUGNAc 

is due to the upregulation of O-GlcNAc by PUGNAc. This shows that O-GlcNAc is able 

to bind to and interact with both of the HIF-1a and HIF-2a sets of proteins.  
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Conclusions  

 The compound, O-linked b-N-acetylglucosamine, was found to influence the 

hypoxia-inducible factor proteins. These proteins are significant in the necessary 

alteration, continuation, and upregulation of cancer metabolism. O-GlcNAc plays a key 

role in changes in the metabolism of cancer cells and is thought to be a possible target for 

anticancer therapy.  Though the results of this research are preliminary and far from 

complete, there is great promise in this area, and the results were significant in showing 

that O-GlcNAc is able to target the ever-relevant to cancer HIF-1a and HIF-2a proteins. 

The future of this research will look to discover the specific site of O-linked 

glycosylation and the mechanism by which this process occurs, along with the potential 

means one might have to interrupt such a process. Due to the impressive nature of cancer 

to not only survive but often thrive in low oxygen environments, thanks in part to HIF-1a 

and HIF-2a proteins, the disruption of such a mechanism could potentially shut down the 

pathways by which cancer is able to grow. The result could be the death or the cessation 

of growth of cancer cells, preventing metastasis and successfully halting the most 

potentially lethal aspect of the disease. However, these aspects of the research are beyond 

the scope of this experiment. 
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